Coastal Re-alignment. North Devon

What options for the future of the estuary?

- A few basics about coastal change
- Historic Change
- Future Scenarios
- Conceptual Model

Bruun Rule

Speed of waves

$$v \approx \sqrt{\frac{g\lambda}{2\pi}}$$
 for deep water, d > $\frac{\lambda}{2}$
 $v \approx \sqrt{gd}$ for shallow water, d < $\frac{\lambda}{20}$

NORTH

Dune Formation

Historic Change

Maps & Charts: 1832

Future Scenarios

Consider the whole system

Conceptual model

where does the sand come from?

The single gyre model

- Same direction as wave-driven sand drift
- Could explain northerly drift with no source or sink
- But: how does the sand get past the estuary mouth?

The tidal delta

Estuaries and the open coast

- Tidal deltas are a roundabout : providing bypass mechanism
- Sediment flows through and around the delta

Tidal delta Epinologia parts

How do we deal with the change?

Healthy Estuary

Computer modelling

- Want to know future width and depth
- Computer model assesses tidal power available and predicts channel size
- Based on the principle that flow through smaller channel is faster giving erosion and vice versa
- An estuary tends to an equilibrium with no erosion or deposition
- Once it achieves this it is said to be in 'Regime'

Too slow: deposition

Equilibrium: the Taw

Equilibrium: the Torridge

Sea level rise: Taw

Sea level rise : Torridge

Meanders and sea level rise: Torridge

Evidence

Tide sensors

- Sensors deployed between
 December 2018 and March 2019
- Analysis carried out in Matlab using U-Tide harmonic analysis

Model output of tides

Tidal gauge locations and MSL at location

- 0 indicates that more than 50% of the records did not register a height
- MSL derived by 50% exceedance value.
- NB the progression of MSL of the tide is not a linear progression along the Taw to Penhill

Summary to date

- Sea level is rising and the estuary will change
- The sediment is needed in the estuary to help reduce the impacts of sea level rise on flood defences and natural habitats
- Instow Dunes area a key part of the estuary system as the flood delta.
- Keeping the estuary flood dominant will help keep the sediment in the estuary for the good of all.
- Where the estuary has matured, we can realign and deliver flood defence benefits.

Instow Dunes

- History of change
- Options
- Discussion

Summary

- Instow Dunes have been growing for a ling time
 - Despite history of dredging
 - Despite the MoD flattening them during training
- Low area of the beach near the steps where the surface water drains.

- 1. Do nothing
- 2. Re-locating the sand
- 3. Beneficial use of sediments
- 4. Train the dunes
- 5. Beach wetting

- 6. Forced circulation
- 7. Increase the height of the beach wall
- 8. Remove the sand off site
- 9. Dredging the estuary

Re-locating

Why didn't it work last time?

- Why didn't it work last time?
 - Sand was supposed to be placed on top or behind the dunes
 - Fencing was placed on artificial dune face.
 - Big storm.
 - Instructions for beach litter management weren't followed.

- Lessons:
 - Better contract supervision
 - Fencing with biodegradable matting on stable dune face

- 1. Do nothing
- 2. Re-locating the sand
- 3. Beneficial use of sediments
- 4. Train the dunes
- 5. Beach wetting

- 6. Forced circulation
- 7. Increase the height of the beach wall
- 8. Remove the sand off site
- 9. Dredging the estuary

Beneficial use of sediments

Training the dunes.

- 1. Do nothing
- 2. Re-locating the sand
- 3. Beneficial use of sediments
- 4. Train the dunes
- 5. Beach wetting

- 6. Forced circulation
- 7. Increase the height of the beach wall
- 8. Remove the sand off site
- 9. Dredging the estuary

Beach wetting

- Sand only blows when it is dry
- Wetting the surface will reduce accretion
- Keeping the strandline clear will reduce accretion

- 1. Do nothing
- 2. Re-locating the sand
- 3. Beneficial use of sediments
- 4. Train the dunes
- 5. Beach wetting

- Forced circulation
- 7. Increase the height of the beach wall
- 8. Remove the sand off site
- 9. Dredging the estuary

Removal of sand

- Extraction of sand was stopped because policy recognised the science that sediment was needed in the estuary.
- Removal of sand will increase the cost of flood and coastal defence and other things. (remember Bruun rule)
- The Sea Sand (Devon and Cornwall) Act 1609 has been superseded.

- 1. Do nothing
- 2. Re-locating the sand
- 3. Beneficial use of sediments
- 4. Train the dunes
- Beach wetting

- Forced circulation
- 7. Increase the height of the beach wall
- 8. Remove the sand off site
- 9. Dredging the estuary

Favoured options

- Training the dunes
 - Needs to be tested
 - Not a complete solution
 - Vista from marine parade will be different
 - Won't impact wave return wall at Marine Court
 - Costs IRO £7K per year

- Sand re-location
 - Has ongoing cost attached to it
 - Running out of space to put the sand
 - Costs IRO £30K per year

Who Pays?

Thanks for your attention

Andrew BELL

